A Comparison between Observations and MM5 Simulations of the Marine Atmospheric Boundary Layer across a Temperature Front
نویسندگان
چکیده
Simulations, made with the fifth-generation Pennsylvania State University (PSU)–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5), of the response of the marine atmospheric boundary layer (MABL) as air moves over a sharp SST front are compared with observations made during the Frontal Air–Sea Interaction Experiment (FASINEX) in the North Atlantic subtropical convergence zone. The purpose of undertaking these comparisons was to evaluate the performance of MM5 in the vicinity of an SST front and to determine which of the planetary boundary layer (PBL) parameterizations available best represents MABL processes. FASINEX provides an ideal dataset for this work in that it contains detailed measurements for scenarios at the two extremes: wind blowing from warm to cold water normal to a 28C SST front and the converse, wind blowing from cold to warm water. For the wind blowing from warm to cold water, there is a pronounced modification of the near-surface wind field over the front, in both model results and aircraft observations. The decrease of near-surface wind speed and stress is due to a stable internal boundary layer (IBL) induced by the SST front, restricting exchange of mass and momentum between the surface and upper part of the MABL. For the cold-to-warm case, the relatively strong vertical mixing through the entire MABL over warm water dampens the response of the near-surface winds and surface stress to the SST front. The properties observed by the aircraft are simulated quite well in both cases, suggesting that MM5 captures the appropriate boundary layer physics at the mesoscale or regional scale.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملA Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part II: Application and Evaluation in a Mesoscale Meteorological Model
A new combined local and nonlocal closure atmospheric boundary layer model called the Asymmetric Convective Model, version 2, (ACM2) was described and tested in one-dimensional form and was compared with large-eddy simulations and field data in Part I. Herein, the incorporation of the ACM2 into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) is described. Model sim...
متن کاملMesoscale Modeling of Katabatic Winds over Greenland with the Polar MM5
Verification of two months, April and May 1997, of 48-h mesoscale model simulations of the atmospheric state around Greenland are presented. The simulations are performed with a modified version of The Pennsylvania State University–National Center for Atmospheric Research fifth-generation Mesoscale Model (MM5), referred to as the Polar MM5. Global atmospheric analyses as well as automatic weath...
متن کاملReport of a Physical Oceanography Research Project over the Southern Continental Shelf of the Caspian Sea
Abstract The study presents monthly variations of seawater properties, monitoring water column stability and stratification over the southern shelf of the Caspian Sea which depends on collecting data. Field measurements were carried out during 13 cruises along the southern boundary of the sea. Spatial and temporal distributions of temperature, salinity and density were investigated. Monthl...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کامل